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Abstract 

A summary is given of our present state of knowledge concerning 

optical and thermal transitions of electrons or holes trapped in solids. 

Among the topics covered are integrated intensities for absorption, 

the breadth of absorption lines and the rates for thermal ionization 

and capture. The relation between the latter and photoconductive 

lifetimes is discussed briefly. 
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I. Introduction 

The scope of the present paper will be limited to those electronic 

transitions in solids that involve lattice vibrations in an important 

vay.  The simplest category 1B that of radiation-less transitions — 

the thermal ionization of a trapped electron (or the inverse process of 

thermal capture). In this process the trapped electron through its 

interaction with the lattice acquires energy by absorbing one or more 

phonons and is released into the conduction band. For impurities in 

germanium or silicon, the ionization energy of .01 or .05 e.v. is less . 

than the Dehye energy k© for these materials, so that, iu principle, a 

one-phonon transition can take place. For an F center, however, the 

2 ~i 
ionization energy ,Jotr*o  2 e.v. in KBr is many times larger than the 

energies of the phonons t\j  .03 e.v., so that thermal ionization can only 

occur as a multi-phonon process. In sections 2 and 3 an explanation 

will be given of the way in which multi-phonon transitions are made 

possible. 

Although optical absorption by trapped carriers can occur without 

lattice vibrations, such absorption would have a line spectrum. The 

broadening of such a line into a band is of obvious importance for 

photoconductivity, and fur this lattice vibrations are essential. 

V 
E 

An attempt will be made to summarize the present state of our 

knowledge concerning such transitions. References will be given to 

the previous literature to facilitate the reader in following our 

discussion, but no attempt will be made to review all of the pr:-vic.:s 

literature, and significant references will undoubtedly be omitted— 

with apologies to the authors concerned. 

2 R. W. Pohl, Proc. Phys. Soc. 1*2, (extra part), 3 (1937). 

3 B. Szigeti, Trans. Far. Soc. 45, 155 (19^9). 



^r 

it- 

a- 

If 

k 
Mott and Gurney using the classical Franck-Condon principle 

suggested that the broadening should increase in proportion to the 

square root of the absolute temperature. Many experiments    indicate 

good agreement with this suggestion at high temperatures. At low 

temperatures, however, the line width did not approach zero, but reduced 

5-11 
to a constant value.    For KBr, the residual line width of about 

.2 e.v. is one order of magnitude larger than the Debye energy! 

12 
Schon  suggested that the residual line width was produced by the 

zero-point oscillations of the lattice. Calculations based on a simple 

ccnfigurational coordinate model (for different materials) were made by 

Williams,  ~ Klick,  and Vlara  to obtain more detailed information 

concerning the shape of the bands and the way their width changed with 

temperature. 

5 

6 

N. F. Mott and R. W. Gurney, "Electronic Processes in. Ionic Crystals," 

Oxford Press, New York, 19^0, p. 117. 

C. C. Klick, J. Phys. Chem. 5J7, 776 (1953)- 

C. C. Klick, J. Opt. Soc. kl,  8l6 (1951). 

' C. C. Klick and J. H. Schuloan, J. Opt. Soc. Am. kO,  509 (1950). 

H. Brinkman and C. C. Vlam, Physica li+, 650 (19^9). 

9 C. C. Vlam, Physica 15, 609 (19^9). 

10 H. F. Hameka and C.C. Vlam, Physica 19, 9^3 (1953). 

11 D. D. Johnson and F. J, Studer, Phys. Rev. 82, 97& (1951). 

12 M. Schon, Ann. Physik Series 6,  ^, 3^3 (19^8). 

13 F. E. Williams, J. Chem. Phys. 19, ^57 (1951). 

^ F. E. Williams, Phys. Rev. 82, 28l (1951). 

15 F. E. Williams and M. H. Hibb, Phys. Rev. &k,  ll8l (1951). 

16 
C. C. Klick, Phys. Rev. 85, 151* (1952). 

' C. C. Vlam, "The Structure of the Emission Bands of Luminiscent Solids 

Thesis, University of Groningen, July 1953* 
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In Section 3 we shall discuss the configurational coordinate model 

l6 
in che light of a generalized Franck-Condon principle.   In particular, 

we shall discuss the band shape and width at low, high and intermediate 

19 
temperatures. We shall also explain the observation  that total 

intensities of absorption (cr emission) are essentially independent 

of temperature. 

18 

19 

M. Lax, J. Chen. Phys. 20, 1752 (1952). Equations quoted from this 

paper will "be prefixed by the letter I. 

See especially reference 17. figures 9 and lk. -rm. 26-^P. 

•3- 
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2. Optical Absorption by Trapped Electrons: Integrated Intensities 

An electron trapped in a crystal will have a wave-function whose 

extent is small compared to the wave-length of the radiation it can 

absorb. It will always be permissible therefore to treat radiation or 

absorption by making a multipole expansion of the electromagnetic field. 

When electric dipole radiation does not vanish because cf a selection 

rule, it will make the dominant contribution and all higher order effects 

may be neglected. 

For electrons that are closely-bound ("deep traps"), including 

F centers, the electronic energy will be large compared to the Detye 

energy of the crystal. The electronic frequencies will then be fast 

compared to the highest vibrational frequencies and a Born-Oppenheimer 

treatment of the electronic notion will be valid.  In silicon and 

germanium, however, the (hydrogenlike) impurities have ionization 

energies cf the order .05 e.v. and .01 e.v. which are smaller than the 

Debye energy and the Born-Oppenheimer approximation cannot be made 

without further analysis. In treating the broadening of impurity levels 

in semi-conductors, it was found, however, that the important vibrations 

are those whose wave lengths are comparable to the Bohr radius, mere 

precisely, whose propagation constant "£' = (2/a) vhere a is the Bohr 

20 
radius in the crystal.   The ratio of vibrational energy to ground state 

binding energy is then  P7<o/Ee ^ "^ M^ (2/a)/Eg where i£  is the 

velocity of sound. This ratio is about .1 or .2 in Ge or Si, so that it 

is still a fairly good approximation to employ the Born-Oppenheiner 

method. 

20 
M. Lax and E. Bu~stein, Broadening of Impurity Levels in Silicon, 

To be submitted to the Physical Review. 
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An analysis of the absorption and emission of electric dipole 

radiation by an electron trapped in a solid has already been given using 

18 
the Born-Oppenaeiner apprc.xir.iation.   The principal result of this 

analysis is incorporated in the starting equation  I(2.1) for the 

absorption cross-section: 

crw- jj< \e./J 3C      ba 
(2.1) 

fc! 

The factc/rs in the brackets take account of the modification of the 

electromagnetic field in the crystal: n = optical index of refraction, 

K = optical dielectric constant, Ee/E = ratio of average electric field 

ift 
at the center to its average value in the crystal.   The shape of the 

absorption apectrura is contained in I. ( \) )  where the subscripts indicate 

that a transition has taken place from electronic state (T)    \f<- . Xj 
I  ,     . TO- 

fc o electronic state CD l^w,X]     (with any accompanying change in 

the vibrational states). Here r is the electron coordinate and x the 

set of nuclear coordinates. The electric moment for the transition is 

I 

given by 

MbaW= j^^en^xldA. (2-2) 

I* 
'c 
i. 

18 
The integrated absorption      from 1(^.3)  is given by: 

r 

when  \o. V  '   •    *s *^e (<Juan'tu:;1"racchanical) thermal average 

probability of finding the nuclear coordinates in dx. To a zeroth 

-5- 
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approximation, M (x) will not depend significantly on x for the 
ba 

noderate displacements that occur in lattice vibrations. Then (2.3) 

reduces approximately to a constant value   I jvK-. (o^ 1   independent 

cf tenperature--in agreement with the widespread observation that the 

integrated absorption is essentially constant over a wide temperature 

range even though the breadth and shape of the absorption spectrum may 

change appreciably. To a first approximation M. (x) C= C + Dx and 

so that the effect on the integrated intensity is tt produce on 

increase with temperature that is second order in the ratio D/C. (The 

primary effect of such a linear ttrm is to alter somewhat the shape 
21 

of the absorption spectrum. Dexter  has found that the usual Gaussian 

shape can be altered by 20 per cent or more on the wings.) 

The integrated absorption cross-secrtion in the presence of vibration 

can therefore be estimated from the corresponding cross-section in the 

non-vibrating lattice. We can avoid statements that depend on an 

explicit choice of electronic wave-functions by introducing the oscillator 

strength 

^ (Z*?/tf)(E»- E.JO/3) \Hbaf   (2.M 

The electronic (rigid-lattice) cross-section to all possible final states 

b can then be written 

<•~ tm ^n rw 
21 

D. L. Dexter, On the Shapes of Absorption and Emission Lines of 

Impurities in Solids, Office of Scientific Research Technical Note 

5^-192= 

-o- I 



where        Hy)  -^    f £ (   Lb ~ E<x ~   W L> ) (2.6) 
1 b?a    ^ 

and jru)a(^)-X 5bo. 

22 
D. L. Dexter, Phys. Rev. 83, 435 (1951). 

1 

: 

/ 

Each term in (2.6) represents a sharp line 'because of the neglect 

of all sources of broadening, however, the corresponding term in (2.7) 

yields the integrated result for that line, which to a first approxioatior 

is valid even in the presence of broadening. 

Note that m cancels out of the combined equations (2.k)  and (2.5)> 

and can therefore be chosen somewhat arbitrarily. For a highly localised 

electron e.g. in an F center, the' first allowed transition (e.g. Is to 

2p) will have an oscillator strength of the order unity (using m '2X- m) 

and higher transitions, e.g. Is to np will be reduced roughly by a 

factor TT'  because of the reduction in overlap. Thus (2.5) and (2.7) 

with these assumed oscillator strengths provide a quick rough estimate 

of the integrated cress-sections for the discrete transitions. Direct 

calculations of the oscillator strengths are necessary, for a more 
22 

accurate analysis. Such calculations have been carried out by Dexter 

for the F-center case. 

For electrons whose wave functions are sufficiently slowly varying, 

the Wannier-Slater-James treatment of electrons in perturbed periodic 

lattices becomes valid. It then becomes possible to represent the wave- 

function of a trapped electron as a linear combination of orthogonalized 

atomic (Wannier) erbitals belonging to one band (if no degeneracy exists). 

The coefficients in this expansion are a slowly varying function of their 
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argument--the cell position, and when replaced by a single continuous 

function describe the smooth envelope of the complete wave function 

whose rapid variations are contained within the Wannier orbitals. 

This smooth envelope function may be regarded as a macroscopic Schrodingei 

wave function since it bears the same relation to the complete wave-, 

function as a macroscopic electromagnetic field does to the microscopic 

field. Indeed, the macroscopic Schrodinger function obeys a hydrogen- 

like wave function with an effective mass different from the vacuum 

mass just as a macroscopic electric field nbeys a Maxwell equation 

containing the medium dielectric constant. 

A slight extension of the Wannier-Slater-Janes treatment can be 

used to show that for electrons with large orbits, the electric dipole 

matrix element can be calculated to a good approximation directly from 

the macroscopic Schrodinger wave functions ignoring th« periodic 

23 
substructure.   A consequence cf this result is that the usual sum 

rule for oscillator strengths 

cm b 

(2.8) 

is valid providing that m in (2.U) is the effective mass in the crystal. 

If ellipsoidal energy surfaces are present then (2.8) remains valid 

» 2U 
provided m is interpreted as the harmonic mean of the three masses: 

l/ra = l/mi +• l/n^ + l/cu (2.9) 

23 

2k 

See for example how the matrix elements of the deformation potential 

are calculated in ref. 18. 

A proof of this statement will be included in a paper by E. Burstein 

and the author on optical absorption by impurity levels in silicon. 

-o- 
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If the energy surfaces are spherical and the potential hydrogen-like, 

then the oscillator strengths are the sane as in the original hydrogen 

atom—the influence of a change in effective mass and dielectric constant 

cancels cut of the oscillator strength formula (2.k)  since E -E„ is 
*. 2 

proportional to m /K and r.  is proportional to the modified Bohr radius, 

/    *x-l or to (Kin ) 

The absorption in the continuous spectrum also "bears a simple 

relation to that in a hydrogen atom. The contribution of the continuous 

spectrum to   \V)}   can 1oe written: 

• 

1 

where n1 =  j^( -f\ ^/ to. ) ~ I 

the ionization energy of the ground (is) state. The integral 

z 
and Eg is 

C( V) q(nl))e .^36 represents the fraction 
. NT ICoMT 

of the absorption in the continuum as compared to the total absorption. 

The contribution to this integral from any region, measured in units of 

Eg, is identical to the corresponding contribution for the hydrogen atom. 

However, ry~- ( \)\     itself according to (2.5) and (2.10) is 
*  ~1   3/2  * 2 

proportional to (n/K)(a Eg)  or IT /(r. ) . 

For purposes of comparison with experiment, we summarize the nost 

pertinent hydrogen-like oscillator strengths from Is to np and to the 

25 continuum: 

f2p,ls = ^l6> f3P,ls = '079, fUp,ls - -029, fcont>l8 = .436    (2.11) 

H. Bethe, Handbuch der Phys. 24/1, Kap. 3, Ziff. 1*1, Julius Springer, 

Berlin 1933- 

-9- 



and the integrated absorption cross-section: 

with /vy\ r—  — 1,()98 x 10"16 e,v* ^cm^ ' 

figure 1 d.nd 2 shov the optical absorption by BorDn-doped silicon. 

Three absorption pea^s can be observed corresponding to the ls-2p, ls-3p 

and ls-Up transitions in addition to the continuum absorption above 

about 0.0^6 e.v. The most striking discrepancy betveen theory and 

experiment is that the discrete absorption peaks get about 10 per cent 

of the total absorption rather than about the 50 per cent to be expected 

from the hydrogen model. Secondly, the strongest discrete transition 

is the ls-3p transition rather than the ls-2p transition. These 

discrepancies are related to the fact that the valence band of silicon 

contains three degenerate bands (six if spin is included), and spin-orbit 

coupling only partially removes the degeneracy. Thus the wave functions 

describing an impurity trapped hole involves a linear combination of 

Wannier functions from several bands, and the elementary treatment given 

above is not valid. 

The integrated absorption should, however, be less sensitive to 

details of the wave-functions and better agreement should be obtained 

with the theoretical expression (2.12). The experimental integrated 

absorption coefficient      JOCfjJ) Q. (K \J) is °'9°  (e.v.)cm" . 

This may be converted to an integrated cross-section by dividing by the 

concentration of Boron centers. To estimate the latter, we note that 

the specimen in question has a room temperature resistivity of 1 ohm-cm. 

-10- 
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26 p 
Assuming a mobility  of 350 cm /volt-sec, this leads to a room 

16       3 
temperature hole concentration of 1.8 x 10  holes/cm . Since all Boron 

centers would be ionized at room temperature, we nay take 1.8 x 10^°/cm 

for the concentration of Boron centers—assuming the concentration of 

other centers to be negligible. Thus we can conclude that 

(T(y)cl(tav)Cr: 0.5 x lO"16 e.v.(cm)2   (2.13) 

with an accuracy no better than 30 per cent. 

The theoretical integrated absorption cross-section can be estimated 

2 
from (2.12) assuming (1) the effective field rnrrecticn fce/E) ic 

negligible for a,  center as large as the one in question (d)  the 

j effective mass may be determined from the ionization energy Eg -IT .04b e.v, 

*~ ^    -V2~      -1/2 
to be m Cno.^5 m  (3) n/k Ox (k)   2= (12) ' . The final result of 

-16       2 
0.7 x 10   ev. (cm) is in reasonable agreement with experiment. 

26 
This mobility has been found reasonably representative at Bell 

Laboratories for estimating carrier concentrations in a group of 

specimens from which the sar.ple in question was taken. 

-11- 



3. Absorption by Trapped Electrons: Broadening 

There are two distinct stages in the calculation of the shape of an 

absorption curve broadened by lattice vibrations. The first is a 
if 
i | determination of the electronic energy as a function of the pertinent 
W 
[^ nuclear coordinates using either one configurational coordinate or 

many. The second is the calculation of the spectrum from the known 

energy vs. configurational coordinate curves using classical, semi- 

classical, or quantum mechanical methods. 

Simple energy level diagrams against a  single fictitious coordinate 

j have long been used to give a qualitative understanding of absorption, 

27 
luminescence, non-radiative transitions, etc.   The first serious 

atterpt to calculate accurately the energy against a (single) real 

Pft 
i coordinate was made by Williams  fr-i thallium activated KC1. Williams 

used as his coordinate the radial displacement of the six nearest 

neighbors. His configurational diagram is shown in Figure 3. The 

remarkable agreement between his calculated spectrum and the observed 
i; 

spectrum is shown in Figure k.    Williams results will be analyzed in 
I 

more detail later. 

i 

~X 

27 
See for example, H. W. Leverenz, Luminescence of Solids, John Wiley 

and Sons, New York 1950, p. 132, or Mott and Gurney, ref. h. 

28 
F. E. Williams, J. phys. Chem. 57, 780 (1953). This paper contains 

the most accurate calculation of the configurational diagram. More 

detailed discussion is given in the earlier papers, refs. 13 - 15' 

•12- 



16      17 
Klick  and Vlam  have essentially reversed the Williams procedure, 

by deriving configurational coordinate curves from the experimental data. 

They assume that an adequate description can be given in terms of one 

coordinate, and that the energies of the ground and excited states nay 

be approximated by quadratics in the coordinate. No attempt, however, 

is made tc assign a real significance to the "fictitious" coordinate, or 

to compare the configuration curves with calculations from fundamental 

principles. Nevertheless, a significant contribution has been made by 

{ this reduction of the experimental data to a more basic form. The 

f i configuration curves permit the observed absorption (and emission) to be 

qualitatively understood, and provide an intermediatt; link between experi- 

i ment and a fundamental theory. For the many cases in which the basic 

mechanism for broadening is not rnderstood, or too difficult to treat, 

the Klick and Vlam procedure is the best that can be done. 

29 
Two courageous physicists Huang and Rhys  in treating the F center 

problem, attempted the double feat of (1) calculating the F center energy 

as a function of all the normal coordinates in the lattice (2) making 

an all quantum mechanical treatment of the many body problem. As we 

shall see, they were more successful in the second or methodological 

aspect of their work. 

Huang and Rhys pointed out that the energy change of the F center 

electron would be produced primarily by the long range electrostatic forces 

present in a polar lattice. Furthermore they noted that large long- 

range fields are produced primarily by the long-wave longitudinal 

optical modes. They therefore neglected interactions with all other 

9 K. Huang and A. Rhys, Proc. Roy. Soc. (London) A204, ho6-k23  (1950). 

I 
-13- 



modes, and treated the long-wave longitudinal optical modes by a 

30 
dielectric continuum model earlier discussed by Huang.   This continuum 

model smooths the cell polarization into a continuous function—just 

as the deformation potential method smooths the displacements in a 

long wave acoustic mode. 

29 
Huang and Rhys  describe the electron-lattice interaction as the 

interaction of the continuum polarization with the electric field produced 

by the static charge distribution associated with the F center electron. 

Since the electric field decreases very slowly with distance, Huang and 

Rhys expect a long range induced polarization, which when translated 

into normal coordinates emphasizes the long wave length modes. 

Unfortunately, however, Huang and Rhys neglected the fact that the F 

center is neutral. Stated differently, the only polarization that we 

need consider is the change compared to the perfect lattice case, and 

therefore the charge distribution to be used is that of the F center 

electron minus that of the negative ion it replaces. Such a neutral 

distribution, however, produces only short range effects and invalidates 

the continuum approximation made by Huang and Rhys. 

One might anticipate that the Huang Rhys procedure of using the 

static unneutralized charge distribution of the electron would yield too 

high an answer for the broadening. Actually their parameter S which 

measures the broadening is calculated to be 3«° whereas a comparison with 

30 
K. Huang, Report L/T 239 of British Electrical and Allied Industries 

Research Association. See also H. B. Callen, Phys. Rev. J6,   139^ 

(19^9) and II. Frohlich, Froc. Roy. Soc, London AlbO, 230 (1937). 

31 J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950). 
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experiment yields S Or. 22. Two points are involved in explaining 

their small result. The first is that the error involved in using a 

non-neutral charge distribution cancels out of their final calculations 

since only the difference between the electron-lattice interactions in 

the ground and excited states is of importance. The second is that 

their continuum treatment grossly underestimates the contributions of 

short range interactions. 

To explain the latter statement, we note that the electron-lattice 

interaction used by Huang and Rhys is linear in the normal coordinates 

|| and its net effect is to shift the equilibrium positions of all the ions. 

However, the major shift will take place for the nearest neighbor ions, 

and such a shift cannot be calculated from a continuum model but must be 

based on a detailed analysis of all the local forces similar ti- the one 

carried out by Williams for KC1:T1. 

ji 32 
Burstein and Oberly   have suggested a model for the F center 

based on treating the trapped electron as a particle in a box. This 

33 model correlates with the empirical rule suggested by Mollwo 
'L _1  2 

)) (X     0=. -5 sec  en (3-D 

relating the maximum absorption frequency       ") J        to the inter-ion I 

: 
distance a for all the alkali halides. The particle in a box model 

emphasizes the incompressibility of the alkali ions that form the box 

walls—i.o. it emphasizes short range forces of a sort omitted in the 

Huang Rhys treatment. A closely related molecular model has been proposed 

J  E. Burstein and J. J. Oberly, Optical Properties of F Centers at 

Liquid Helium Temperatures.  Proceedings of Conference on Low 

Temperature Physics, 1951, National Bureau of Standards Circular 519. 

33 E. Mollwo, Z. Phys. 85, 56 (1933). 

-15- 
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3U 
by T. Innui and Y. Vemura,  and a detailed molecular calculation was 

35 
started by Muto.   However, an adequate calculation of the configuration 

energy of tne F center does not yet exist. 

In the remainder of this section, we shall assume that the energy 

of the trapped electron as a function of the various configurational 

coordinates is known, and shall discuss the methods available for 

computing the shape of the absorption spectrum. The Franck-Condon 

principle states that we may regard the nuclei as standing still while 

tne electron chu.u&u» its state due to obp-orbir-g the photon. Thus the 

strength of absorption can be computed for a given configuration and the 

result averaged over all possible configurations. The shape factor 

_J— YO~^ }-)'    in (£#1) can then be written 

A&M=tbM- EaU) (3.3) 

a. 
The squared matrix element    I V\J\ ,  f-v\|    represents the strength 

of the absorption. Fu(x) dx is the normalized probability of finding the 

nuclei between x and x + dx (here x may represent a set of nuclear 

coordinates) and the presence of the delta function factor insures that 

only those configurations whose energy difference £E(x) = \^\ \)     will 

contribute to the spectrum at y\ \j     . A "derivation" and detailed 
18 

analysis of the Franck-Condon principle has been given by the author. 

^  T. Innui and Y. Uemura; Prog. Theor. Phys. _5_, 395 (1950) 

-" T. Muto, Prog. Thecr. Phys. k,  181 (19^9)• 

~1 

•16- 
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We shall refer to the Franck-Condcn principle as classical if 

} 

M 

« 

classical statistics are used in obtaining the probability distribution: 

pa(x)classical -«*£Ea.MAT 'J/M^^T)^ 
(3.U) 

and as semi-classical if the quantum mechanical distribution is used: 

p (y) = 2^ ^[-E^ftATJ i XoJ*) 
(3.5) 

2, ^[-E^AT 
where Xanj

,
xx; is the m",J vibraticnal wave function when the electron Is 

in state a, and E^ is the total electrcn-vibrational energy in thi& 

state. For sufficiently high temperatures, the quantum mechanical 

distribution (3»5) can be shown to reduce to its classical value (3A). 

Such a classical approximation will be valid providing kT  >^> r\ u> 

where iu is the frequency of the normal mode or modes important in the 

broadening. We shall see, however, that the semi-classical method is 

so easy to apply that little is gained by making the classical 

approximation. 

We shall illustrate our remarks by considering the case where x is 

a single variable.  (For the appropriate generalization to the many body 

problem, the reader is referred to reference 18). Equation (3-2) can 

then be reduced to 

dx (3-6) 

W-kv) 

•17- 



•^•-i 

; 

i 
I! 

and if the states Xan(x) can tie approximated by states of a harmonic 

oscillator of frequency a> and mass M then 

PJ^^^VJ^L-I^MS (37) 

where     <X
Z> ~ (t\ /f\ w)(x   +" /f\) (3-8) 

-1 
and m = [^(^/Vr)-1| (3-9) 

I 
The combination of (3-6) and (3-7) yields the complete spectral distribu- 

tion. To be even more specific, I shall assume that the excited as well 

as ground state configurations can be approximated by parabolas: 

Ea(x)-t^^ (3-10) 

AE(x)=A% --t-B t7- + Kub0.      (3.n, 

where   fa  L^KCL.  is the enerSy difference when x = 0 i.e, from the 

equilibrium point of the lower state and K - B is the stiffness of the 

excited state.  (Usually B > 0). 
||2_ 

/ \ (X) I  can n°w be 

j written 

1   • G (v)<2rr<^I'(Arj"H[-^('-^^B\x>)j(3a2) 

x >X 
+^tiO+rjA/6i<x1->] 

where the two roots for x are x = (A/B) (1 + p ) and 

r = [i - 2B(ku- KDJ //fj* (3-«) 
-18- 
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If the change In stiffness B is sufficiently small, or the temperature 

sufficiently low that B v^X /\^  A >  tnen ifc is permissible to drop 

the second, exponential and expand \   with the result that the spectrum 

becomes Gaussian: ± T, l -» 

with <(U- ilvU1/" ~ A^'OO (3-15) 

j' and a mean energy independent of temperature. 

\\ ,        , ,        18 
A detaxleu quantum mechanical analysis of the spectrum  shuwiid 

that the semi-classical spectrum (3.12) has the correct first and second 

moment: 

<h»> = kv = <AE(x)> = hv, - ± 8 <YZ? (3.16) 

<(Ky- Kvf> = A<Xl>+ X b^K^f (3.i7) 

(Note the temperature dependence of the mean energy (3'lk))- However, 

the shape of the spectrum (3-12) depends on the validity of the semi- 

classical approximation, which we shall now examine, by considering the 

extent to which the third moment is adequately given by the semi-classical 

formula 

<(Kv-kvf> =<(AEM-kw)*>       (3.18) 
S.C, 

The difference between the quantum mechanical and semi-classical third 

lfl 
moments is found  from 1(4,5) and (4.8) to be: 

J 
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where T - P /2M is the kinetic energy, (T,££) is a commutator, and the 

symbol Av means take an average of the enclosed operator in the state 

Xfln(x) and then take a Boltzraann average ever the states a. It is not 

fair to compare the error (3.19) with (3.18) since (3-18) vanishes if 

E = 0. An estimate of the accuracy involved can he obtained by comparing 

(3.19) with [<(AE(*)-hv)2>j3/z 

This criterion was stated in 1(^.9). Indeed, the ratio of the third moment 

to the three halves power of the second moment is called the skewness and 

| denoted Q   .  (c.f. Eq. I 8.18). Our criterion for validity of the 

' semi-classical approximation is    Hra M   US.C.     -*- — — v- - . * 

If this condition is obeyed then (3-12) will be valid. The spectrum 

will however reduce to a Gaussian even in the semi-classical case only 

if the skewness is then sufficiently small:  A (   •C^ J_ 

Evaluating (3-19) and (3«l8) and dividing by the three-halves power of 

(3.17) we obtain respectively: 

V-#S.C.=>(|+*)XA3 (3-2o)     ! 

2       —  2 
where \ = (16/17) (K/B) /(l + 2 /W ) (3-22) 

and c< = ^ A2/(17 B2 <x2> ) (3.23) 

The semi-classical criterion   (JOM "" 0.S c^"^ ^~ can be siraPlifie(i 

by considering separately the cases in which \ is greater or less than 

unity. If \>1, then  c<>> ^ or A2(2 ft\  +l)/(2 "K Ma?) » 1 (3-2U) 

In this case, it is clear that we must also have 0^ >'>  1, so that 

using (3-21) the spectrum is also Gaussian. Comparing with (3-8) and 

(3.17),  the condition (3-2U) can br- written in the more perspicuous:1 forra. 

-20- 



(ovAf- A|6<X>TAW > i (3-25) 

If \> 1, and C*v> 1 it follows, comparing (3.25) and (3-17) that the 

observed broadening will be larce compared to the phcnon energy of the 

ground state,  (in the absence of other information the Debye energy 

k9 can be used as an estimate for  fS <») • This latter condition is 

necessary but not sufficient for the validity of the semi-classical 

method. Even if \< 1, if o^ > 1, the condition (3-25) is sufficient 

to insure the semi-classical and gaussian nature of the spectrum. 

However, if X.-^ 1, the semi-classical condition (3.20) merely requires 
'3 

73 
OC> /   A-      when \ < 1 (3.2b) 

so that if 1 "> O^ > "> \   a ser.ii-classical non-gaussian spectrum 

can be observed. Under these circumstances the condition (3.26) can be 

rewritten in the form:      j_      .     / 

A^»tw/o( (3.27) 

or<(Kv-k-v,)7 » (WOOD + (z/^g- (3'28) 

which is slightly more stringent than (3-25) since QL^  1. Therefore 

if (3.25) is disobeyed, a fully quantum mechanical treatment is necessary. 

We shall illustrate these criteria by applying then to the problem 

of KC1:T1 discussed by Williams. From his configuration diagram 

(Figure 2) wc may deduce that A = 2-393 e.v./A, A  = 8.016 e.v./A , 

K = 16.85 e.v./A , ~p\  a> = .0166 e.v. using his mass of M = 6 

f_M^1 + (.h26h)    Mk 1  = U.239 x 10** *~ grams. At aosolute zero, we 

tove<X*f=(W2KM.22x|62A 
o ' 

ACO - 1 u Kx/(n Bl) - 4.1W 

««<* = 4A^7B^xl>o)0r4z.4 

(3.29) 

-21- 
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Thus we have \ ^ 1 and O^ >"> \ "> 1 so that the spectrum vill be 

both semi-classical and GausBian. In fact OAU ~ 0cf """ \   fck.)— • i- 

and X  />^r (  /c?lw )  -~—     «02 so that the skewness would be 

quite snail. These results could have been deduced directly from the 

experimental data (assuming \ ^ 1) by noting that the r.m.s. width 

^(V^V - Kut^^ -125 e.v.7(2.3^6)0= .0533 

(where .125 e.v. is the full width at half-power). This width is 

larger than the Debye energy, and certainly larger than \\ tx> Or .0166 e.v, 

. * xu -.-v M.^/j/A 2= (.Olo6/.0533)2^- -1 in agreement 

with the previously calculated value. 
  2 

At higher temperatures \(T) »X.(0)/(l + 2/y\)> 

o((T) =   0^( O ) / (1 «• 2 7?\) SO that \(T)/ O((T) decreases 

with increasing temperature, and the semi-classical criterion remains 

valid in William's case. The spectrum will remain Gaussian as long as 

C$T) = (U2.6)/(l + 2 /Y\ ) >^ 1, i.e. for all measurable temperatures, 

As a contrast to the William's case, we shall consider the configura- 

tional diagram deduced by C. C. Klick and J. A. Schulman for Z^SiO^tMn. 

-h h 2 
They find A Cr -.9 x 10  ergs/cm, B = 31 x 10 ergs/cm , 

II K = 1*6 x 10 ergs/cm2, M = hH    t^Z.   1.057 x 10_22g., "t\ <o ^6.952 x 
-lU 

10   ergs — .0V3U e.v. The observed broadening at low temperatures 

is of the order of .1 e.v. so that one might hope for the validity of 

a semi-classical treatment. However, the zero pt displacement 
-1* 

( V\u/2k)l'2Q=. 2.67 x 10"10 and A( "K uy^k)1' C=: 2-k * 10 ergo 

which is only -35 ( t\ o) so that condition (3.25) is violated. One 

finds further that \( O ) — 2, and 0(( O ) — -27. With these 

parameters, the semiclassical requirement cannot be satisfied at any 

temperatureJ The basic reason, of coarse, is that the two parabolas 

-22- 
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of the configuration diagram have appreciably different stiffnesses, 

yet their minima are quite close together so that (a) the broadening 

is produced primarily from the difference in curvature (b) matrix elements 

are only appreciably to low-lying vibrational states and for these 

quantum effects are appreciable. 

A comment may be added here about the F center. The Huang-Rhys 

parameter S is simply A <^x ^  /( "p\ a>) and since S is given the 

empirical value of 22, condition (3.25) is easily satisfied. Since we 

may anticipate that K/B and hence \(o) will be of the order unity, 

(3.25) is a sufficient condition for the validity of the semi-classical 

method. We therefore expect that the P center absorption can be 

adequately represented by a Gaussian at low temperatures, and by (3-12) 

at high temperatures, except for the influence of cubic terms in the 

latter case. 

33 
Early measurements of F center absorption due to Mollwo  are shown 

in Figure 5- More careful measurements have been made recently by 

36 
Hesketh and Schneider  in an attempt to analyze the shape of the F band. 

Figure 6 shows a comparison of their experimental results with a 

37 Lorentzian shape—such as had previously been assumed by Siaakula .. and 

others to be valid on the basis of dispersion theory. The agreement is 

poor--since the fundamental mechanism for broadening is not the usual 

one of dispersion theory. Figure 7 shows a Gaussian plot by Hesketh 

and Schneider >-f their data. A straight line of slope /y\. indicates 

36 
R. V. Hesketh and E. E. Schneider, Phys. Rev. 95, 8372 (1951*) 

•57 
A. Smakula, Z. Physik 5£, 603 (1930). 
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^(u)d(M=(N<^) K 
/to* 

where  j^, ^ iY\       = square of Index of refraction. Unfortunately 

the usual evaluation of experimental data estimates the integrated 

absorption, not by integration, but merely by taking a suitable 

produced of maximum absorption 0\ /yv\and "toe full width at half 

power \Aj     . For a Lorentzian shape 

f 
whereas for a Gaussian shape 

j«(»WM"   * ("/UltMnVl~ WK-WB-W 

1 
a curve shape of the form exp l -( \)   - L)   )  J   • Hesketh 

L. max  J 
and Schneider find /y\_ * 2 on the high frequency side, but /Yv. * 2.5 

on the low frequency side. The latter may be partly a result of 

anharmonic forces. 

It has been pointed out to the author by D. L. Dexter that the 

customary use of Smakula's formula to determine the number of F centers 
/ 

in a crystal, or their oscillator strength is incorrect because of 

Smakula's assumption of a Lorentzian shape, so that a considerable 

amount of experimental data must be reevaluated. If we note that the 

absorption constant C\(   U ) equals   l\Jr   0^~ {  ^j    where 

f\fr     is the number of centers, the integrated absorption for a line 

of oscillator strength f can from (2.5-2.7) he written: 

/&./ £A   an h e        (3.30) 

-2U- 



Smakuia's formula is equivalent to the use of (3.30) and (3*31) combined 

2      7>    2 
with the assumption (Ee/E) £=• ( /Y\. + 2) /9, i.e. the assumption that i 
the effective field E is equal to the Lorentz field E + C+n/j) P« 

On the basis of the experimental shape, (3*30) should be more nearly 

combined with (3*32). Furthermore, the F center electron is sufficiently 

diffuse that the effective field is considerably less than the Lorentzian 

field. A more detailed discussion of these points will be given in the 

Physical Review by D. L. Dexter. 
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, h.    Broadening: Relation of Many Body and One Body Viewpoints 

Although the one parameter treatment discussed above is an over- 

simplification of the situation for a real impurity center, it is 

nevertheless quite feasible to use a simple configuration diagram, 

for the purpose of deciding whether a semi-classical treatment is 

permissible and to understand the observed spectrum. We shall try to 

explain in terms of a many body viewpoint why for most problems a one- 

parameter analysis is likely to yield qualitatively correct results. 

Our essential conclusion will be that if the modes which participate in 

j j the broadening do not have too great a frequency snread, a one-parameter 

!• 
viewpoint using & suitable mean frequency will yield fairly accurate 

i 
< results. 

i 
We shall start by assuming that the configurational energy 

difference £E is a function, possibly non-linear, of a single parameter 

x where the latter is a linear combination of the displacements or the 

I 
1 

i v^ /v/t *>
7 n.    Q. (ll.l) 

normal coordinates Q j.     of the initial state: 

where/Y is the total number of normal coordinates. 

If the semi-classical approximation is valid, we proved in I 

that the one-parameter spectrum (3-6) and (3.7) is valid (c.f. 1(5-7) 

2 
tind l(5«19)) providing merely that <^ x > is given its correct rather 

than its one parameter value. Thi« value from (^.l) is 

7 

-26- 
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The question ";e nay ask is this: is there- a harmonic oscillator with 

effective mass M and frequency o> such that its mean oscillation 

is a good approximation to (k.2)  at all temperatures? Both formulas are 

linear with temperature at hi^h temperatures and have a zero-point value 

at low temperatures. The best that we can do is to choose M and a> 
G e 

so that there is agreement with the high temperature slope and the 

zero point value.    This leads to the choice 

, iv\/_\   ^   ./. rl\ /r/\ _/. N-M~| ti     , M   = ('   /K)  rw-\^ J/ L£-\U-VU->   /J (1^.5) 

where R = ^   (X j //V *' '6> 

The averaging operation ^\v* used in (h.k)  and (^.5) is a weighted 

average over the modes using Q.v as weight: 

It is clear that if the coefficients (XA    that measure the extent to 

which modes WJ  participate in the broadening emphasize a small range 

of frequencies, then to will be somewhere within the range, and M will 

be essentially M/R. There is a certain amount of genuine arbitrariness 

in M through the choice of the normalization constant R. For example 

if x represents the sum of six radial displacements, then the kinetic 

energy would by 6 M(x/.6) = M/6 and R = 6. If x represents the 

average of the six radial displacements, then the kinetic energy is 

6 M x and R = 1/6. In any case, M/R is equivalent to the intuitive 

choice for the effective mass. The presence of dispersion among the 

important frequencies can only increase the effective mass since 

Av (OJ-V  >    \AV(CO-'J]
Z 
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To illustrate the above remarks, we shall consider two cases. In 

the first, we shall let x = x0  , the displacement of one atom. In 

this case all the (X\   are equal. F.yr the acoustic modes, with a 

Debye spectrum this yields 

co = (53/2) (U.8) 
e 

(Mg/M) = U/(3R) (4.9) 

l: where 53 is the highest acoustic frequency. If, however, we were to 

, i 

consider a coordinate x = X;L - x_,, say the difference between the 

displacement of a K atom on each side of the Tl center in Williams case, 

the weighting factor associated with a phonon of propagation constant t 

would be |1 -  cos *~C>   *(x - x_^) I which takes account of correlations 

in the motions of the two particles. The contributions then come 

largely from short wave-length acoustical and optical modes. (For long 

wave length modes of either type, the two K atoms move iu uiiisou). If 

only acoustical modes were considered, we would find to ^^ .66 co, and 

M C=z  1.1 (M/R). This estimate assumes a Debye spectrum unperturbed by 

the center. A stiffness increase near the center, and the inclusion of 

optical modes will both tend to raise coe. Note that the modes <-?.«; 

which are used in (3»29) should be the perturbed modes of the lattice 

in the presence of the center.' If the stiffness change near the 

center is sufficiently large, a trapped molecular type mode will occur, 

and this one mode will make a predominant contribution to the parameter 

x, thus insuring the validity of the one-parameter viewpoint. 

When a fully quantum mechanical calculation is necessary, it is 

more difficult to assess the validity of a one-parameter viewpoint, 

since the quantum-mechanical many-body problem has not been completely 

solved. Three cases have been solved however: 
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(1) The energy difference AE is linear in the normal coordinates, 

and the latter all have the same frequency (Huang and Rhys ). 

(2) The energy difference £E  is linear in the aormal coordinates, and 
•1 Q 

the latter have a spread in frequencies (Lax ). 

(3) The energy difference contains a diagonal quadratic form 

ivy* .    v-)\     hi' in addition to linear terras 

(O'Rourke38). 

The pertinent results may he summarized as follows: 

(a) The Huang Rhys spectrum for many modes of the same frequency is 

identical to that which would have been obtained from a sins'!<* 

parameter with the same frequency and a suitably chosen linear 

energy difference. 

(b) The Lax spectrum 1(8.12) reduces to the Huang and Rhys spectrum 

1(9-l) If there is only a small dispersion of frequencies—so that 

a one-parameter description is possible. 

(c) The O'Rourke spectrum is identical in shape to the Lax spectrum 

but has a shift of mean energy of an amount \/\/~ ^>__, Q " Q,- y 

This shift is exactly what one would expect from the moment 

formula 1(4.3)• The same frequency shift can be obtained, to a 

good approximation in a one-parameter problem by having a suitable 

stiffness change. In a one parameter problem however, this 

frequency shift will always be accompanied by a change of shape. 

In this case, it is not the one-parameter result which is wrong, 

but rather that a quadratic change in potential energy near a 

g center rr" Q  X      becomes a quadratic for in/v <d-J O iyy. TU 

containing important off-diagonal terms when expressed in terras 

k 

; 

38 

of the normal coordinates. 

R. C. O'Rourke, Phys. Rev. 9_1, 265 (1953). 
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Pending the results of a more detailed analysis involving off- 

diagonal quadratic terms, it is probably safe to say that the criteria 

for the validity of a one parameter viewpoint will remain valid: 

The important modes that contribute must hove a small dispersion of 

frequencies. If this is the case, it will be possible to choose an 

effective frequency and mass to fit the breadth of the spectrum over 

the entire temperature range.  If appreciable skewness is present, 

3 however, it may be difficult to fit over an entire temperature range 

11 I 3 by choosing one parameter B, unless some restrictlnns «re placed on 

the second order energy change       |\j~ ^^ $Li  Qi. 9-i 

As an interesting example of the relationship between the one 

parameter and the many body viewpoint ve shall discuss the case of 
20 

impurity levels in semi-conductors.   Wr> note that for Boron doped 

Silicon there are about 500 atoms within a sphere whose radius Q_ 

is the first Bchr radius of the trapped electron in its Is state. 

The broadening is produced by the vibration of these atoms through 

the electron lattice interaction. We may describe the latter by the 

deformation potential. 

V(fc)= E, diuSRcr x E, N~%2 t-9tbpfc^<£(T)      (*.io) 

so that the energy shift associated with an electron in state y v A.) 

is given approximately by 

AE^(^)\J(fi)%^iE, N"tSv N(t)^fr)     (4.ii) 

• 

where 
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and the explicit form for A/(T~)is based on a hyurogenic wave function 

of Bohr radius CX.   • The normal coordinate Q{t")ia associated with 

phonons of propagation constant "f . 

To connect with a one parameter viewpoint, we simply introduce 

for our parameter x, the energy shift £E itself. The constant  CX- \ , 

now written Q-«E  obey 

\ax\
L= E^x \N(t)\L (4.13) 

effective frequency assuming a Debye spectrum can now be obtained 

from (4.4) and (4.11): 

n. A . .-i (4.14) 

where  y = <o/k~   is the velocity of sound. The integrals in (4.14) 

were evaluated by extending the limits to infinity since JL Q-'t 
X  **** 

7.7. 

The (squared) broadening at absolute zero may be obtained by 

setting fpv = O in (4.2): 

- 1*     Z   rr2"        (4.15) <(*£*>   - 
T-O    Mir a.   (a.«£jr      v 

(fhty. 

The s ratio of the squared broadening ^(AE') ^    to its absolute zero 

value can from (4^2) be written: 

Rfr)= \ + 24- f x3(i +*?)"*&#>(* X/T) •   Q"' d x   C*.i6> 
•no 

PI- 
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where x = J- OL tT  and 6 = 2 t\ IT /A (^  .An approximate 

formula for R(T) using the single effective frequency o>e is simply 

We note that f\.a) /k = (8/3«)A. A comparison of the "exact" and 

approximate R(T) from (h.l6)  and (4.17) is shown in Figure 8. They 

"both have the same zero point value and high temperature slope. Near 

jj T=Q R(T)^ 1 tO,l(zTTT/Af 

The exponential decrease in E Q_ (T) is characteristic of the Einstein 

approximation we have made, whereas the power law decrease in R(T) is 

characteristic of the contributions of the low frequency phonons—as 

in the Debye theory of specific heats. 

To compare these results with experiment* we note that the zero 

point line width obtained from (4.15) is of the order of 0.00^ e.v. 

whereas the experimental width at liquid helium temperatures is about 

0.001 e.v. (see figure 1). The theoretical line width may be an 

overestimate because of the use of the Born-Oppenheimer approximation. 

It may also be an overestimate because the deformation constant E.. has 

been overestimated. The reason for the latter possibility is that E1 

is determined by comparing an experimental mobility with a theoretical 

mobility based on thermal scattering—neglecting interband transitions 

which are undoubtedly significant in p type silicon. 

To see wnetner we have assumed the correct basic mechanism for 

broadening, namely interaction of the electron with acoustic modes, 

we can examine the way in which broadening changes with temperature. 
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An examination of (4.16) indicates that the modes of importance have 

an energy --f?0A where A is about 90°K in silicon. These are modes of 

quite low energy—they have wave-lengths whose size is of the order of 

the Bohr radius of the trapped hole. Does experiment bear this out? 

Figure 8 shows that R(T) is of the order of 2 at T = A, i.e. an 

appreciable broadening should occur theoretically for temperatures as 

low as 90°K. An examination of Figure 1 shows that a broadening of 

just the right order of magnitude^2 occurs between nitrogen and 

helium temperatures. This substantiates the importance of low energy 

I 
| ' modes in the broadening. Since our calculated absolute broadening is 

of the right order of magnitude, our basic picture of the phenomenon 

must be correct. 

t 
i: 
I 
I 

I; 
II 

I 
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5. Thermal Ionization and Capture 

As is undoubtedly discussed in other papers of this conference, the 

sensitivity of a photoconductor increases with the lifetime of the 

electrons in the conduction band, but -its rapidity of response decreases. 

(Corresponding remarks can be made about holes in the valence band but 

will henceforth be omitted). The photoconductive lifetime is determined 

by a competition between the rate of thermal ionization and the rate of 

recombination. For example, if we are dealing with a crystal containing 

two types of impurity centers: |\j n donors/cm-5 and  |\|Q_ acceptors/cm , 

with  [\/r\ > jNJ/ti   >  then we will have a type photoconductivity with 

a lifetime 

where B is the recombination rate and K = A/B is the ratio of ionization 

to recombination rates, or the equilibrium constant: 

K - UlT m*fe0T/£f2-e/f (- E l-kr) «•*> 

where Eg is the (ground state) ionization energy of the center, assumed 

39    * to have only one state,  and m is the effective mass. If the electron 

energy has several minima within the Brillouiu zone, and an ellipsoidal 

^9 The K of (5.2) must be divided by the factor 

{I+:E ^4V^PC(%-EJ/*T] ] 
where the states  p*   are the excited states and Q./r\    *s "the 

corresponding degeneracy factor. See Burstein, Bell, Davisson 

and Lax, J. Phys. Chem. 57, 8^9 (1953) And K. S. Shifrin, 

Teknicheskci Zhurniel Fiski 14, 43 (1944). 

•34- 

-- H f 



energy surface with masses m^, nu an<^ mo> then we must make the 

replacement 

(m )J/- > (No. of valleys) (l^nya ) " (5.3) 

since the latter expression takes proper account of the density of 

states near the minim*"!) band energy. 

At high temperatures, we will have K >> N. and 

£ ^ 6K = A   t    (T SLOK^L) (5.u) 
the ionization rate, whereas at low temperatures we will have 

K « N. and 

^ O: b^A  )   V * vsrrxaxx.) (5.5) 

the recombination rate—since the number of ionized donors at low 

temperatures will be approximately equal to K the number of acceptors 
#1 

available to remove electrons from the donor levels. In germanium with 

NA ~ 10  acceptors/cm , the temperature dividing the regions of 

validity between (5A) and (5-5) is about 25°K. 

As we shall see in the subsequent discussion, one of the difficulties 

that faces a basic calculation of ionization rates is that fairly large 

values must be obtained in order to agree with experiment. For example, 
Ik 3 

germanium with about 10  acceptors/cm has a photoconductive lifetime 

^*s, -5 ^0 
vT of less than 10  seconds even at liquid helium temperatures. 

This implies that B > 10  cm /sec, or since K ^   10*1, A > 10" /sec. 

Perhaps a more understandable way to put this statement is to note that 

at 1*°K,thermal velocities are of the order 3 x 10 cm/sec so that the 
-16 2 

center has an effective cross-section of the order of 3 x 10  cm or 

larger for thermal capture. 

Burstein, Davisson, Bell, Turner and Lipson, Phys. Rev. oj, 65 (1951*) 
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luminesce. In particular, a careful search fcr F center luminescence 

Ul 

\4.i. 
- --SL -v- j£l 2= e^ £L .-R  (5.6) 

where R is the nuclear displacement. Their unperturbed wave-functions 

were simple ("Hartree") products cf an electronic-wave function times 

a vibrational wave function, and the transition is caused by \j _ 

as a perturbation. We sholl refer to this as the Hartree approximation. 

Using only terms linear in R, only one-phonon processes are 

allowed in the Hartree approximation. Since the ionization energies of 

hydrogen-like traps in Ge or Si are less than the corresponding Deb ye 

energies, acoustic phonons are available to make a one-phonon transition 

possible. The Goodman-Lawson-Schiff answer, for the ionization 

probability turns out too small by about two orders of magnitude. 

C. C. Kiick, Phys. Rev. %k,  1541 (195*0. 
ho 

Goodman, Lawson and Schiff, Phys. Rev. 71, 191 (1947) 
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1 
As a general experimental argument for high radiationless 

transition probabilities, we note that most electron traps do not 

/ 

has been made by Klick  whose essential conclusion is that radiative 

transitions are never more than 3 per cent of the non-radiative 

transitions. 

One of the first attempts to treat thermal ionization from 

electrons trapped in semi-conductors was made by Goodman, Lawson and 
42 

Schiff.   They assumed th*t. the essential interaction as far as ioniza- 

tion is concerned is the interaction between the trapped electron and the 

vibrating core atom: 



( 

Further discussion of the G.L.S. interaction will be given later. 

| Goodman, Lawscn, and Schiff alsc made an estimate of the 

probability for raulti-phonon processes using terms of order R^* in the 

1+3     1|2 
potential and found their contribution to be small.   Seitz  in 

f 

unpublished work treated the same interaction \J ~   in a Born- 

Gppenheimer approximation, arriving at results, according to Goodman, 

Lawson and Schiff of the same order as their own. An explanation for 

this agreement will be given later. 

i During the ouuuifcr of 1931> i« treating the broadening of impurity 

levels in silicon with the deformation potential interaction, I also 

estimated the thermal ionization probability with the same interaction 
i ' 

i r using the Hartree approximation. Although the broadening came out one 

a 
order of magnitude too high, with the experimental constants then 

I 
available, the thermal ionization was an order of magnitude low. 

Because of this puzzling discrepancy, publication of this work was 

postponed, and both problems were reexamined. The thermal ionization 

problem was treated in the Born-Oppenheimer approximation and the many 

  

n 

*3 The problem of non-radiative transitions between bands had been 

discussed surlier by F. Moglich and R. P.cmpe, Physikalische Zeitschrif 

1+1, 236 (i^); Zeits. fur Phys. 115, 707 (19^0). They used a 

Hartree viewpoint and suggested that the many-phonon processes 

required here by energy conservation were obtained from terms in 

the electron lattice interaction of high order in the nuclear 

displacements. Only qualitative estimates were made for transition 

rates. 

•37- 
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body suns were performed following methods used in the broadening 

analysis.   But the answer did r.ct change appreciably. The disagreement 

for the broadening calculation was reduced in the meantime partly by 

taking into account "motional narr^wi.ns" and partly by changed . 

kk 
experimental constants due to improved mobility measurements. 

Leurgans,'y  in his thesis, also considered the thermal ionization 

problem with the deformation potential and the Hartree approximation. 

His results confirmed the discrepancy we found. Yafet  reconsidered 

j the problem in the Born-Oppenheimer approximation and found that multi- 

phonon contributicns were negligible so that the answer Leurgans and 

I had obtained using the Hartree approximation would not be appreciably 

increased by multi-phonon contributions. An appreciable increase was 

found, however, when Coulomb wave-functions rather than plans wives were 

used for the final state. A more detailed discussion will be given 

later in this section. 

kl 
Kubo  suggested that perhaps quadratic terms in the interaction 

energy are important--so that the vibration frequencies in the excited 

and ground electronic states were different. He used the Goodman, 

Lawson and Schiff interaction, the Born-Oppenheimer approximation and 

1 treated the central atom as a simple harmonic oscillator. He more or 

less arbitrarily chose the change in frequency of the harmonic oscillator 

kk 
M. B. Prince, Phys. Rev. 93, 1204 (1951*). 

k5 
P. J. Leurgans, Thesis 1952 University of Illinois. 

k6 
Y. Yafet, Private communication. 

' R. Kubu, Phys. Rev, 8o, 929 (1952). 
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because of a change In electronic state to be 10 per cent. Because of 

the arbitrariness of Kubo's model, it is difficult to assess the 

applicability cf his results, hovever, there is no question but that 

any significant change in vibrational frequencies will appreciably 

increase the rate of thermal ionization. 

In addition to the case cf electrons trapped at impurity levels 

in semi-conductors, considerable effort has been spent on radiationless 

transitions in F centers. From the formal point of view, the first 

major contribution was made by Huang and Rhys who made a many body 

calculation in the Born-Oppenheimer approximation assuming an interaction 

energy linear in the normal coordinates. The major limitation of their 

calculational technique--as in their treatment of broadening--is that 

all the modes must have one frequency.  (This limitation can easily be • 

by-passed by using techniques developed in the author's analysis of 

the Franck-Condon principle). 

The rate for radiationless transitions from the 2p to the Is state 

calculated by Huang and Rhys^ was so low in comparison to radiative 

transitions, (10~ " in KBr at 30°K) that luminescence should be easily 

observed at mo3t temperatures for all the alkali halides. This is 

definitely not the case, however. 

Meyer  suggested that a possible explanation for the low 

radiationless transition rate was the neglect of quadratic terms in the 

energy difference between the two states. He introduced therefore, a 

diagonal quadratic form in addition to the Huang-Rhys interaction energy 

lift 
H.  J.  G. Meyer, Physica 20,  l8l L {195*0 
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and recalculated the transition rate. The diagonal coefficients are 

somewhat arbitrary, hovever,, and he chose them so as to agree with the 

observed temperature shift in the optical absorption peak.  He then 

found a sufficiently high radiationless rate to explain why luminescence 

has been difficult to observe. (Radiation less/radiative C=- 30 in KBr 

at 20°K). 

Ir. a subsequent unpublished manuscript, however, Meyer comes to 

entirely different conclusions: 

(1) He finds it permissible to neglect quadratic terms in the energy 

difference—having first estimated their size by comparison with 

experiment. 

(2) He finds that the ratio of radiationless tc radiative transition 

probabilities from the excited to the ground ctate of the F center 
-7 

is now 10  in KBr at 0°K.—so that luminescence should be observable. 

The difference between this result and his previous one is 

apparently due to different ways of determining empirically the Huang- 

Rhys parameter S which measures the strength of the linear terms in the 

interaction energy. If H is the full width at half-power, his new 

method of determining S is to use the relationship: 

I tf=s JU u k4[s c^ atco/^) -<3 (5-7) 

which is found to hold empirically. The formula previously used, which 

had a theoretical justification was identical to (5»7) with C = 0. 

! *. It was not clear to me why a moderate change in S would change his 

I •' 8 
' answer for radiationless transitions by a factor 10 . However, a 

£> detailed examination of his formula in the limit T = 0°K revealed a 

1 factor So       where <JL   is the number of phonons involved in the 

r -ko- 
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transition—which is of the order 70 in KBr--so that a 20 per cent 

error in S can yield a factor 10 in the transition probability! In 

viev of the sensitivity of Meyer's result, conclusions about the 

feasibility of observing luminescence must be regarded as provisional. 

An attempt to generalize the Huang-Rhys method to the case when a 

l+o 
distribution of frequencies are present has been made by Tewordt  for 

application to semi-conductors. Tewordt's approach, however, parallels 

Huang and Rhys closely, and he is consequently unable to carry out 

explicitly the sums over the vibrational states. He was apparently 

unaware that this portion of the problem had already been solved. •Lu 

50 
Pekar  has written an interesting paper on the diffusion of 

electrons toward a trap and their eventual capture. His analysis uses 

classical statistics and the diffusion equation outside a somewhat 

arbitrary radius /"L0  at which capture is supposed to take place at 

a rate  ft ^W-(A-©)  where (Y\(/i^)   is the density at jl0  .  'His 

(5.8) 

3 
final result is an effective capture rate Bej.f cm /sec given by: 

P iifpQeVrOATl 

t~   1 * f»Wn-DT^[-eV/k)/^fj f^[eVM/^d$ 

7    L. Tewordt, Zeits fur Physik 137, 60k  (195*0• 

50 S. I. Pekar, Abh. Sow. Phys. 1, 1*7 (1951) translated from 

? Z. f. exp. u. theor. Phys. 20, 267 (1950). 
OS 
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If the second term in the denominator is large compared to the first 

(capture rate lar^e compared to diffusion rate), the process will be 

diffusion limited with a rate t:iven by: 

BJ^BU = 4-TT Qlf^fC? ^/""ld (*3"J        (5-9) 

The diffusion constant D can be calculated from the mobility U     using; 

51 the Einstein relation' 

D = h *• Ye 

The potential can be taken to be eV( /\. ) = -(e / j<^ ro ) where \<^ is 

the dielectric constant. At sufficiently low temperatures that 
...     2 

-f^~T <C< e /v <<. A-o  ) tlie integral in (5-9) becomes 

insensitive to its upper limit which may be set equal to infinity. Thus 

if -$T « Eg = the ionization energy of the center, we find that 

The diffusion rates thus obtained are quite high* At liquid helium 

temperatures, using an experimental mobility of the order of 5 x 10 , 

we find £> <J[ — 6 x 10  cm /sec, whereas the calculated quan bum 

'9 .3 capture rate is or the order of Q 'i 10  cm /sec in germanium at the 

same temperature. Thus the diffusion is very rapid, and the limiting 

factor is the capture process itself. 

J      For experimental verification see Transistor Teachers Summer School, 

Phys. Rev. 88, I368 (1952). 

52 E. Conwell, Proc. I. R. E. kO,  1327 (1952). 
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It is of some interest to note that if we define 

e> = is -^L~ 
e V/^W^T^ (5.12) 

to be the capture rate adjusted for the increase in density near the 

origin, Pekars equation can be rewritten in the form 

J-  _ -1- ^  _L <5.13) 

indicating that the total time for trapping is the sum of the diffusion 

tine and the adjusted capture time. Since the diffusion time is, by 

our estimator;, ••sually negligible, we shall be concerned primarily with 

the adjusted capture.time. 

The adjustment (5.12) is somewhat sensitive to the choice of f~[      , 

but the latter can be taken to be of the order of a Bohr radius so that 

|-^ Cl  tS exp(E„/kT,). Since we have assumed kT it> stuall compared 

to the ionization energy Eg, an enormous increase in capture would 

occur, if this result were taken literally. However, the electron 

density cannot suffer such a marked increase near the center because of 

the uncertainty principle. 

It is therefore necessary to take account, quantum mechanically, 

of the increase in density near the center. Gummel and I have done this 

by using Coulomb continuum wave functions instead of plane waves to 

53 describe the incoming electrons.   Roughly speaking the increase in 

density near the center is the Sommerfeld factor. A detailed 

evaluation of the matrix element for the transition yields an additional 

factor 2, so that the appropriate correction in the squared matrix 

element for the use of coulomb rather than plane waves is 

! 
i 

* I 

53 
H. Gummel and M. Lax, Phys. Rev., to be submitted. 
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(Srt/Up ) jl - exp(-2rt/^, )     where \A,=  ka, k is the propagation 

constant of the incident electron, and a is the Bohr radius of the trapped 

state. 

A rough indication of the Coulomb correction at low temperature* 

can he obtained by noting that the important k's in the equilibrium 

distribution are of the order ( "p\ k /2m*  ) C^-     k T or 

ka rv, (k0T/Eg)  . Thus the correction factor is roughly 6jr(E£r/kQT) 

which can be of the order of 200 at liquid helium temperatures (fcr 

Eg C^r  .0125 e.v. in germanium). At high temperatures, the Boltzmanu 

factor puts only a weak limit on k, but the matrix element fcr the 

C2 "1 ~5 1 - (ka)  J 

which means the important values of ka are smaller than say l/2. Even 

at high temperatures, then, the correction factor can be as large as 50. 

' To illustrate these results in more detail, we note that the total 

capture rate [3 is a Bcltzmann average over the capture rates v/S/oJ^?. 

from a given state k: 

5 = \/fA*'FKfl>*U ^Ve   (5.iM 

For simplicity, we assume spherical energy surfaces, so that the 

normalized distribution function is given by: 

The transition probabilities V^/aJ^ can be written in the form: 

o       ^ (     -\ n (5.26) 

M- 



if 
__ ._ •..  i m 

where J\   is the volume of a unit cell, f^A    is the mass of one atom, 

/£* is the propagation constant of a phonon, r\ a) = ~f\ a>( ^ ) is 

its energy, and 0" = dco/d^is the corresponding velocity of sound. We 

must insert for t" and co a value consistent vith conservation of energy: 

Aco =E^ i- ^^/fz/m*) (5-17) 
If we let "f\ <"( "C^  ) = T\ % = E8» then for a hydrogenic impurity 

(5.17) is equivalent to the conditions 

T-tJl^ \       U3-U)0(l^^)    (5.18) 
For the case in which the perturbing potential is the deformation 

The matrix element of exp( tt • A..)  between the free state k and the 

bound state a has been calculated exactly. Because L is large compared 

to a-J", the reciprocal Bohr radius, however, the resulting expression can 

be greatly simplified. If the free state is described by a plane wave 

we get q^^r^/v)^8 
(5-20) 

If the free state is described by a Coulomb wave we get 

(5.21) 

Thus justifying the previous remarks about the importance of the 

Coulomb correction. 

The corresponding formulas for D using the Goodman, Lawson, Schiff 

interaction are: 

-45- 



p.     _ 3ZTTO. E|       Ofr - WV)' 

0 _ ^L^LiU        J^fc£ —^ Wv''^1 
td.=    v ^Ot^-^f"1^] 

(5.22) 

(5«2j) 

/* 

The four values of D can be inserted into (5.16) and (5.1k)  to obtain 

expressions for the total capture rate. For simplicity, we list the 

results for the temperature range k0T «£!-< Eg—the range of greatest 

interest. 

lUE.n    i 
ME^ra (£%aY 

A -Y 
ME^vra.      Ct0ar U*TJ 

(5.24) 

(5.25) 

.6. L. S 

Up.va, —    —— •— 3 M vra- (5.26) 

E<A'A 

(5-27) 

?' 
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At liquid helium temperatures in germanium, the capture rate usin£ 

..q  o 
the deformation potential and Coulomb waves is about 10 ' cnr/sec. 

The use of plane waves yields a result smaller by a factor of about 175• 

The Goodman-Lawson-Schiif interaction with plane waves gives a result 

smaller by a factor 5000; with Coulomb waves the result is smaller by 

a factor 23. Thus the primary mechanisui at low temperatures seems to 

be the usual electron lattice interaction--and Coulomb corrections are 

important. 

A B of 10  cm /sec with 10  compensating impurities would lead 

f -i- - 10 ?'/0,4f^ loYscc (5-28) 

i Tr 
ho 

On the other hand, Burstein et al,'  find that for Zn doped germanium 

-5 
10 " sec is an upper limit for the lire-time—so tnat tne tneoreticai 

capture rate may be all right, but is possibly too small. 

For silicon, the theoretical capture rate is 10  cnr/sec. The 

large increase compared to germanium is produced by a smaller value of 

't^ CL because of the higher velocity of sound in silicon. Assuming 

the number of compensating impurities in fairly pure silicon to be of 

the order of 10 '/cm , the photoconductive life-time is given by 

*c=- do"7-15--1-    --8 
10 )  "Ir- 10  sec which is well within the experimental 

-1* 5^ 
limit **£• <. 10  sec set by Burstein. 

5^ n E. Burstein, J.  J.  Oberly and J. W. Davisson, Phys. Rev. 89,  331 (1953) 
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Figure 3. Configuration coordinate diagram of the activator system for 

KC1:T1 including the effect of angular dependence of the Tl 

charge density and the. perturbation of the states of Tl by 

the crystal field.  (F. E. Williams, J. Phys. Chem. 57, 780 

(1953)). 
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Figure k.    Theoretical and experimental absorption and emission spectra 

of KC1:T1.     (F. E. Williams,  J. Phy?.  Chem.   57,  T80 (1953)). 
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Figure 5» The influence of temperature on the absorption spectrum of 

color centers in KBr.  (E. Mollwo, Zeits. fur Physik 6p, 56 

(1933)). 
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Figure T. A Gaussian plot of the F band absorption. (R. V. Hesketh 

and E. E. Schneider, Phys- Rev. ?J5, 837 (195M)- 
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The theoretical ratio R(T) of the squared broadening at the temperature T 
to its zero point value, is plotted as a function of the dimensionless variable 
T/A . The temperature A = 2fiv/kQa* 94°K in silicon, where v is velocity of 
sound, a is the Bohr radius in the crystal, and k0 is the Boltzman constant. 
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